
 Page: 1 Date Saved: 2017-04-21

Joint Video Exploration Team (JVET)

of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11

Document: JVET 360Lib

Software Manual

Title: 360Lib Software Manual

Status: Software AHG working document

Purpose: Information

Author(s) or

Contact(s):

Yuwen He, Xiaoyu Xiu, Yan Ye

Vladyslav Zakharchenko, Elena Alshina

Amith Dsouza

Jian-Liang Lin, Shen-Kai Chang, Chao-

Chih Huang

Yule Sun, Ang Lu, Lu Yu

Geert Van der Auwera, Muhammed Coban

Yao Lu, Chuanyi Zhang

Adeel Abbas, David Newman

Tel:

Email:

yuwen.he@interdigital.com

xiaoyu.xiu@interdigital.com

yan.ye@interdigital.com

vlad.zak@samsung.com

elena_a.alshina@samsung.com

amith.ds@samsung.com

jl.lin@mediatek.com

shenkai.chang@mediatek.com

georg.huang@mediatek.com

sunyule@zju.edu.cn

luangss@zju.edu.cn

yul@zju.edu.cn

geertv@qti.qualcomm.com

mcoban@qti.qualcomm.com

yao.lu@owlreality.com

chuanyi.zhang@owlreality.com

aabbas@gopro.com

dnewman@gopro.com

Source: InterDigital Communications Inc.

Samsung Electronics Co,. Ltd

MediaTek Inc.

Zhejiang University

Qualcomm Inc.

OwlReality

GoPro

Abstract

This document describes the usage of 360Lib reference software for JVET experimentation.

1 Introduction

360Lib is developed based on projection format conversion tool for 360 video provided by InterDigital.

The tool is added as a separate library to the HM and JEM software package, which can be used together

with HM and JEM encoder. A standalone application is also provided. The following list summarizes

features and functionalities currently offered by 360Lib:

 Currently, 360Lib supports 7 different projection formats including equirectangular projection

(ERP), equal-area projection (EAP), cubemap projection (CMP), octahedron projection (OHP),

mailto:Yan.Ye@interdigital.com
mailto:luangss@zju.edu.cn
mailto:yul@zju.edu.cn

 Page: 2 Date Saved: 2017-04-21

icosahedron projection (ISP), truncated square pyramid projection (TSP) and segmented sphere

projection (SSP). The tool supports forward and backward conversion between any two of these

seven formats.

 Further, 360Lib also supports conversion between the same projection format but with different

parameters. For example, it supports ERP to ERP with resolution change, CMP to CMP with

different frame packing arrangements and/or with different face sizes, and so on. It also supports

chroma format and bit-depth change between the input and output video (with same or different

projection formats).

 For cubemap projection, 360Lib supports flexible frame packing arrangement. It allows any of the

six cube faces to be rotated by 0, 90, 180 or 270 degrees. The user can further specify where to

place that face (with desired rotation) in the 2D projected image. As examples, cubemap 4x3 and

cubemap 3x2 are supported, as well as other packing arrangements specified by the user.

 360Lib can work with video input and/or output bit-depths of ≥ 8 bits/sample, and chroma formats

of 4:2:0, 4:4:4.

 360Lib can render video inside a field of view (FOV) specified by the user with rectilinear

projection.

 360Lib supports objective quality evaluation metrics including S-PSNR [8], WS-PSNR [9], CPP-

PSNR, static and dynamic viewport based PSNR.

 360Lib is integrated with HM and JEM encoder. The encoder can directly encode the output video

after projection format conversion, which eliminates the need to always store the intermediate video

as YUV files. The encoder also reports all those spherical metrics in the encoding stage as well as

PSNR.

 Truncated square pyramid projection (TSP) included in 360Lib is for viewport-aware bitstream

switching schemes. The included integration utilizes the cube geometry and warps the six cube

faces into a compact frame with 25% resolution of the original equirectangular input frame.

2 Detailed description of main features

This section describes the main features of the 360Lib software package, including projection formats,

frame packaging configurations for cubemap, octahedron, icosahedron, truncated square pyramid

projection and segmented sphere projection, bit-depth and chroma formats supported, and quality

evaluation metrics supported. We also describe interpolation filters supported by the 360Lib software.

2.1 Projection formats and examples

Table 1 lists the projection formats supported by 360Lib, their respective values of the GeometryType

parameter in the configuration file, and respective example images.

In the configuration file, two GeometryType parameters are used: InputGeometryType specifies the input

video geometry, and CodingGeometryType specifies the output video geometry. For example, to convert

from equirectangular to cubemap, these parameters should be set as follows:

InputGeometryType : 0

CodingGeometryType : 1

Table 1. Projection formats

GeometryType Projection Frame packing Example Image

 Page: 3 Date Saved: 2017-04-21

0
Equirectangular

[2]

1
Cubemap

[3]

4x3:

3x2:

2
Equal-area

[4]

3
Octahedron

[5]

Non-compact [1]:

Compact option 1 [10]:

A3

A1

A2

A4

A5

L0 L1 L2

A0

A6
L3 L4 L5 L6

θ =90

θ =-90

θ =0

ϕ=-180 ϕ=0 ϕ=180

u

v

Y3

Y1

Y2

Y4

Y5

L0 L1 L2

Y0

Y6
L3 L4 L5 L6

(θ =90)

(θ =-90)

(θ =0)

ϕ=-180 ϕ=0 ϕ=180

u

v

Y=-sin(θ)

 Page: 4 Date Saved: 2017-04-21

Compact option 2 [1]:

5
Icosahedron

[6]

Non-compact [1]:

Compact:

7

Truncated
Square Pyramid

(TSP)

[11]

8

Segmented
Sphere

Projection (SSP)

[12]

Horizontal frame packing:

Vertical frame packing:

 Page: 5 Date Saved: 2017-04-21

9

Adjusted
cubemap
projection

[14]

10

Rotated sphere
projection

[15]

*GeometryType = 4 is used for view point projection, GeometryType = 6 is used for Crasters Parabolic Projection

2.2 Frame packing for cubemap projection

When the input or output geometry is the cubemap format (that is, InputGeometryType = 1 or

CodingGeometryType = 1), the respective configuration parameters SourceFPStructure and

CodingFPStructure are used to specify the frame packing arrangement of the input and/or cubemap faces.

The six faces of a cubemap are illustrated in Figure 1(a), and Figure 1(b) shows the 2D uv coordinates

system used to store the cubemap faces: u is the horizontal axis and v is the vertical axis in the frame

memory. As will be discussed below, each of the cubemap faces may be rotated by a multiple of 90⁰ before

being stored in the output frame packed image. Figure 1(b) illustrates how each of the six cubemap faces

will be stored in the output frame packed image if no rotation is applied (that is, 0⁰ rotation). When 90⁰,
180⁰, or 270⁰ rotation is applied to a given face, that face will be rotated counter-clockwise based on the

orientation of the uv axes. The tool supports cubemap conversion from one frame packing arrangement to

another frame packing arrangement.

 Page: 6 Date Saved: 2017-04-21

(a) (b)

Figure 1. Cubemap format

Table 2 specifies the face index values corresponding to each of the six cubemap faces.

Table 2. Face index of cubemap

Face index Face label Notes

0 PX Front face with positive X axis value

1 NX Back face with negative X axis value

2 PY Top face with positive Y axis value

3 NY Bottom face with negative Y axis value

4 PZ Right face with positive Z axis value

5 NZ Left face with negative Z axis value

>5 “Null” face values used for

frame packing only

To fill any remaining “holes” (i.e. invalid faces) in

the frame packing arrangement. See example in

Figure 3 below.

The frame packing arrangement parameters InputFPStructure and CodingFPStructure are specified as a set

of integer values. The first two integer values specify the numbers of rows and the number of columns of

faces, respectively. Then, a string of integer pairs follow; each of the pairs is arranged as the face index

followed by degrees of rotation of that face. Note that all rotations are performed counter clockwise. The

face index values are specified by scanning the packed frame in raster scan order, until all (# row × #

columns) of them have all been specified. If (# row × # columns) is greater than 6 (for example, if

cubemap4x3 is used), then some of the faces will be invalid faces. These invalid faces can be specified by

a face index greater than 5 (see Table 2), and will be filled with default gray color, i.e., (Y,U,V) set to

(2(OutputBitDepth-1), 2(OutputBitDepth-1), 2(OutputBitDepth-1)), in the final frame packed output image.

To help users understand how to specify frame packing parameters, we provide two examples using an

input image in Figure 2 in equirectangular projection (InputGeometryType=0). To obtain a corresponding

cubemap 4x3 projection with the frame packing arrangement shown in Figure 3, CodingGeometryType

should be set to 1, and the output frame packing parameter CodingFPStructure should be set as follows:

CodingFPStructure : 3 4 2 90 6 0 7 0 8 0 1 0 4 0 0 0 5 0 3 270 9 0 10 0 11 0

Where “3” and “4” specify the number of face rows and the number of face columns, respectively. Then,

three strings of integers follow to specify how to pack the faces. In these strings, the face index values are

O

X

Z

Y

θ

ϕ

O

X

Z

Y

θ

ϕ

Ps

PY

u

v

NX

NZ

u

v

PZ

u
v

PXu

v

NY

u
v

u
v

 Page: 7 Date Saved: 2017-04-21

marked in red, and the rotation degrees in black. The first string of integers “2 90 6 0 7 0 8 0” specifies the

face placement configuration for the first face row. “2” is the index of the TOP face as in Table 2, “90”

means to rotate the TOP face by 90 degrees counter clockwise before putting it in the output image. “6”,

“7” and “8” are virtual face index specifying an empty (i.e., null) face, and “0” means that no rotation (0-

degree rotation) is applied. The second string of integers “1 0 4 0 0 0 5 0” specifies the face placement

configuration for the second face row. “1” is the index of the BACK face as in Table 2; “0” means that the

BACK face is not rotated. Similarly for face “0” (the FRONT face)’ and face “5” (the LEFT face). Note

that all faces in the second face row are valid face with face index values no greater than 5. And the third

string of integers “3 270 9 0 10 0 11 0” specifies the face placement configuration for the third face row.

“3” is the index of the BOTTOM face as Table 2; “270” means that it is rotated by 270 degrees counter

clockwise before being stored in the output image. The remaining faces “9” “10” and “11” are all null faces.

With this specification for CodingFPStructure, the six faces will be packed as shown in Figure 3.

To convert the equirectangular projection in Figure 2 to a corresponding cubemap 3x2 projection shown in

Figure 4, the configuration file parameters should be set as:

CodingFPStructure : 2 3 4 0 0 0 5 0 3 180 1 270 2 0

Where “2” and “3” specify the number of face rows and the number of face columns, respectively. Then,

two strings of integers follow to specify how to pack the faces. The first string of integers “4 0 0 0 5 0”

specifies the face placement configuration for the first face row. “4” “0” and “5” are the index values of the

RIGHT, FRONT, and LEFT faces respectively; no rotation (0-degree rotation) is applied to these faces.

The second string of integers “3 180 1 270 2 0” specifies the face placement configuration for the second

face row, and can be interpreted in the same way as above. Note that all faces in cubemap3x2 packing

arrangement are valid face with face index values no greater than 5. With this specification for

CodingFPStructure, the six faces will be packed as shown in Figure 4Figure 3.

Further, it is worth noting that the cubemap 4x3 and cubemap 3x2 examples in Figure 3 and Figure

4Figure 3 are intentionally packed in a way that maximizes continuity along face boundaries in the output

image.

Figure 2. ERP picture as input: red dotted line indicates the longitude

-180 -45-135 45 180

90

-90

135

 Page: 8 Date Saved: 2017-04-21

Figure 3. Cubemap 4x3 frame packing for the output: red dotted line indicates face boundary

Figure 4. Cubemap 3x2 frame packing for the output: red dotted line indicates face boundary

360Lib allows user to configure the face size in cubemap projection. As an example, the input picture

resolution of 3840 x 1920 can be specified by the following parameters:

 SourceWidth : 3840

 SourceHeight : 1920

And the face size of the output cubemap projection of 960 x 960 can be specified by the following

parameters:

 CodingFaceWidth : 960

 CodingFaceHeight : 960

The width and height of frame packed output picture will be calculated according to the numbers of face

rows and face columns specified in CodingFPStructure, as discussed above.

2.3 Frame packing for octahedron projection

Octahedron format projects the points on the unit sphere onto eight triangle faces as defined in Figure 5 (a)

and Figure 5 (b). When the input/output geometry is octahedron (i.e., InputGeometryType = 3 or

CodingGeometryType = 3), two frame packing arrangements are supported for the input/output faces, i.e.,

non-compact format and compact format. For non-compact format, the octahedron is defined in Figure 5

(a). In non-compact format, there are some invalid faces containing “null” values that are filled with gray

samples. In compact format, the octahedron defined in Figure 5 (b) is used and the faces are arranged in

such a way that no “null” values are present in the input/output picture. Figure 6 shows examples of non-

compact format (Figure 6 (a)) and compact format (Figure 6 (b)) of the octahedron projection, respectively.

PY[2]

NY[3]

NX[1] PZ[4] PX[0] NZ[5]

PZ[4] PX[0] NZ[5]

PY[2]NX[1]NY[3]

 Page: 9 Date Saved: 2017-04-21

In Figure 6 (b), in order to pack eight triangle faces into one single rectangle, Face 2 and 3 are vertically

split to two parts; “2-1” and “3-1” represent the first part of face 2 and 3 while “2-2” and “3-2” represent

the second part. This compact format contains four discontinuous edges between face 2-1 and 6, face 3-1

and 7, face 2-2 and 4, and face 3-2 and 5. As shown in Figure 7, a band of 16 padded samples using vertical

linear interpolation are added between the discontinuous edges.

In the configuration file, two frame packing parameters are used when the octahedron projection is applied

to input/output: SourceCompactFPStructure specifies whether the input video is in non-compact format or

compact format, and CodingCompactFPStructure specifies whether the output video is in non-compact

format or compact format. For example, to convert from non-compact format to compact format, the two

parameters should be set as follows:

SourceCompactFPStructure : 0

CodingCompactFPStructure : 1

(a) (b)

Figure 5. Octahedron definition: (a) definition for non-compact format; (b) definition for compact

format

(a)

0

1

6

5

2

3

4

7

Y
Z

X

X

Y

Z0

1

2

3

4

5

6

7

0044 66 22

1155 77 33

 Page: 10 Date Saved: 2017-04-21

(b)

(c)

Figure 6. Octahedron input/output frame packing format: (a) non-compact format; (b) compact

format option 1; (c) compact format option 2. Red lines indicate face boundaries.

 Figure 7. Padding along discontinuous edges using vertical linear interpolation.

2.4 Frame packing for icosahedron projection

Icosahedron projection has twenty faces, each of which is in the same triangle shape as that of octahedron

projection. Figure 8 illustrates the definition of the twenty faces for the icosahedron. Similar to octahedron

projection, both non-compact and compact format are support by 360Lib for the input/output frame packing

arrangement, as specified by the configuration parameters SourceCompactFPStructure and

CodingCompactFPStructure. Figure 9 shows examples of the non-compact (Figure 9 (a)) and compact

(Figure 9 (b)) frame packing arrangement for the icosahedron projection. In order to shape the input/output

into rectangle, in Figure 9 (b), Face 4, 5, 14 and 15 are vertically split to two parts and put along the left

and right boundaries of the input/output picture; “4-1”, “5-1”, “14-1” and “15-1” represent the first part of

those faces while “4-2”, “5-2”, “14-2” and “15-2” represent the second part of those faces. Faces “4-1”, “5-

2”, “6”, “7”, “8”, “9”, “10”, ”11”, “12, “13”, “14-1” and “15-1” are placed in reverse vertical direction.

0 1

2-1 3-1

2-2 3-2

4 5

6 7

 Page: 11 Date Saved: 2017-04-21

Additional vertical padding of N samples is introduced between faces “14-2”, “16”, “18” and “10”, “12”,

“14-1”; and faces “4-2”, “6”, “8” and “0”, “2”, “4-1” (Figure 9 (b)); padded samples are ignored during

inverse conversion. The conversion between the non-compact format and the compact format for the

icosahedron projection is also lossless.

Figure 8. Icosahedron format

(a)

4

6

8 0

2

1

3

5

7

9

15

17

13

11

19

10

12

14

16

18

Y

Z X

00 22 44 66 88

11 33 55 77 99

1111 1313 1515 1717 1919

1010 1212 1414 1616 1818

 Page: 12 Date Saved: 2017-04-21

(b)

(c)

Figure 9. Icosahedron input/output frame packing format: (a) non-compact format; (b) compact

format, red lines indicate face boundaries; green lines indicate padding; (c) the compact frame

packing with padding, the while regions are padded regions.

2.5 Frame packing for truncated-square-pyramid

360Lib includes the truncated-square-pyramid (TSP) for viewport-aware bitstream switching schemes. The

included integration utilizes the cube geometry and warps the six cube faces into a compact frame with

25% resolution of the original equirectangular input frame. When the input/output geometry is TSP (i.e.,

InputGeometryType = 7 or CodingGeometryType = 7), the frame packing in Figure 10 is supported. Figure

10 defines the (x,y) coordinates inside the packed TSP frame. The coordinates (x’,y’) inside a single

cubemap face have normalized ranges [0.0,1.0]. In this implementation, the back face is subsampled by 4

 Page: 13 Date Saved: 2017-04-21

horizontally and vertically, while the side faces are warped to trapezoidal regions. Table 3 specifies the

forward and inverse mapping equations.

Figure 10. Truncated-square-pyramid frame packing format

Table 3 Forward and inverse equations between cube faces and TSP faces.

Forward equations (cube faces to TSP) Inverse equations (TSP to cube faces)

Right TSP trapezoid from right cube face:

x’ = (x – 0.5) / 0.1875

y’ = (y – 2.0x + 1.0) / (3.0 - 4.0x)

Right cube face from right TSP trapezoid:

x = 0.1875x’ + 0.5

y = 0.375x’ – 0.75x’y’ + y’

Left TSP trapezoid from left cube face:

x' = (x – 0.8125) / 0.1875

y' = (y + 2.0x – 2.0) / (4.0x – 3.0)

Left cube face from left TSP trapezoid:

x = 0.1875x’ + 0.8125

y = 0.25y’ + 0.75x’y’ – 0.375x’ + 0.375

Bottom TSP trapezoid from bottom cube face:

x' = (1.0 – x – 0.5y) / (0.5 – y)

y’ = (0.375 – y) / 0.375

Bottom cube face from bottom TSP trapezoid:

x = 0.1875y’ – 0.375x’y’ – 0.125x’ + 0.8125

y = 0.375 – 0.375y’

Top TSP trapezoid from top cube face:

x' = (0.5 – x + 0.5y) / (y – 0.5)

y’ = (1.0 – y) / 0.375

Top cube face from top TSP trapezoid:

x = 1.0 – 0.1875y’ – 0.5x’ + 0.375x’y’

y = 1.0 – 0.375y’

Back TSP face from back cube face:

x' = (x – 0.6875) / 0.125

y’ = (y – 0.375) / 0.25

Back cube face from back TSP face:

x = 0.125x’ + 0.6875

y = 0.25y + 0.375

2.6 Frame packing for segmented sphere

Segmented Sphere Projection (SSP) segments the sphere into 3 segments: north pole, equator and south

pole. The boundaries of 3 segments are 45°N and 45°S. The north pole and south pole are mapped into 2

circles, and the projection of the equatorial segment is the same as ERP. The diameter of the circle is equal

to the height of the equatorial segments because both pole segments and equatorial segment have a 90°

latitude span.

 Page: 14 Date Saved: 2017-04-21

Figure 11. Segmented sphere conversion from sphere with horizontal frame packing

The equatorial segment is split into 4 squares in order to get faces of same size. The frame packing structure

is depicted in Figure 12. The corners of poles are filled with "null" values. The face index is defined Table

4.

Table 4. Face index definition of segmented sphere projection

Face index Face region

0 North pole region (latitude > 45)

1 South pole region (latitude < -45)

2 Partition 1 in equator region

(0<=longitude<90 and -45<=latitude<=45)

3 Partition 2 in equator region

(90<=longitude<180 and -45<=latitude<=45)

4 Partition 3 in equator region

(180<=longitude<270 and -45<=latitude<=45)

5 Partition 4 in equator region

(270<=longitude<360 and -45<=latitude<=45)

CodingFPStructure : 1 6 0 0 1 0 2 0 3 0 4 0 5 0

Figure 12. Horizontal segmented sphere frame packing format

The vertical frame packing is also used for the sake of a smaller line buffer. This is achieved by alter the

“CodingFPStructure” parameter in the configuration file.

CodingFPStructure : 6 1 0 0 1 0 2 270 3 270 4 270 5 270

 Page: 15 Date Saved: 2017-04-21

Figure 13. Segmented sphere conversion from sphere with vertical frame packing

Figure 14. Vertical segmented sphere frame packing format

2.7 Frame packing for adjusted cubemap projection

The adjusted cubemap projection (ACP) [14] adjusts the sampling position in each face of CMP. The face

order is the same as that defined in Table 2 for CMP. The frame packing is also the same as CMP’s frame

packing. Following configuration parameters are specified for ACP with 3x2 frame packing layout.

CodingGeometryType : 9

CodingFPStructure : 2 3 4 0 0 0 5 0 3 180 1 270 2 0

 Page: 16 Date Saved: 2017-04-21

2.8 Frame packing for rotated sphere projection

Rotated Sphere Projection (RSP) [15] segments the sphere into 2 identical segments stacked in two rows:

top segment and bottom segment. The boundaries of two segments are arranged like the way a stitch line

on a tennis ball is drawn. Since RSP has a 3:2 aspect ratio like cube map, it can be visualized as having 6

faces, as shown in Figure 15. Faces 4, 0 and 5 represent top segment, while faces 3, 1 and 2 represent bottom

segment. It is important to note that unlike cube map, the two segments of RSP are perfectly continuous.

The top segment is same as ERP, while bottom segment is also same as ERP, except that it is obtained by

rotating sphere around Y and Z axis. In this way, both segments have a 90°x270° FOV span.

Figure 15. Rotated sphere conversion from sphere with horizontal frame packing

Corner pixels of each segment overlap with pixels from other segment and as a result, they can be greyed

out and marked as inactive. This helps in achieving better coding efficiency. The arc marking inactive areas

is circular, with diameter equal to height of one segment plus 32 pixels. The extra 32 pixel overlap ensures

that subjective quality issues on seam are minimized.

Following configuration parameters are specified for RSP.

CodingGeometryType : 10

CodingFPStructure : 2 3 4 0 0 0 5 0 3 0 1 0 2 0

2.9 Bit-depth and chroma format supported

360Lib supports video bit-depth of up to 16 bits. Four bit-depth related parameters are supported in the

configuration files: “InputBitDepth” specifies input bit-depth, “OutputBitDepth” specifies output bit-

depth, and “InternalBitDepth” specifies internal bit-depth. “ReferenceBitDepth” specifies the bit-depth of

the original (i.e., reference) video used in metric calculation. By default, the input bit-depth is set to 8, and

the internal and output bit-depths are set to the input bit-depth, and reference bit-depth is set to the output

bit-depth. If the reference bit-depth and the output bit-depth are different, for the purpose of metric

calculation, the sample values in lower bit-depth are first scaled to the higher bit-depth by left shifting the

bit-depth difference, then the metric is calculated in the higher bit-depth domain.

360Lib supports 4:4:4 and 4:2:0 chroma formats as input and output. In the configuration file,

“InputChromaFormat” specifies the input chroma format;

“OutputChromaFormat” specifies the input chroma format;

“InternalChromaFormat” specifies the internal chroma format for conversion;

By default, the input chroma format is set to 4:2:0, and internal and output chroma format are set to the

input chroma format.

An additional chroma format related parameter, “ChromaSampleLocType”, is added to specify the chroma

sample location type for 4:2:0 video. The chroma sample location types are defined according to the same

location type ID in HEVC specification. By default, ChromaSampleLocType is set to 2.

If the internal chroma format is 4:4:4 while the input is 4:2:0, the chroma upsampling is applied with proper

upsampling filter according to ChromaSampleLocType. If the input chorma format is 4:2:0 and

 Page: 17 Date Saved: 2017-04-21

ChromaSampleLocType is 0, and the internal chroma format is 4:2:0, then the parameter

“ResampleChroma” is used to control if align the chroma sampling phase with luma sampling phase before

projection conversion.

2.10 Objective quality metrics supported

The 360Lib conversion software supports five quality metrics listed in Table 5. The user can select any

quality metric to evaluate the objective quality between the reference images and the test images by setting

the configuration file parameters “PSNR”, “SPSNR_NN”, “WSPSNR”, “SPSNR_I”, and “CPP_PSNR” to

1 to enable or to 0 to disable the corresponding metric calculation. By default, all metrics will be calculated

in one conversion process.

In order to use any of these metrics, the user needs to provide a reference file name. For example,

RefFile : reference_file_name

When “SPSNR_NN” or “SPSNR_I” is set to 1, S-PSNR calculation without interpolation (SPSNR_NN) or

with interpolation (SPSNR_I) is enabled and one additional parameter file “SphFile” needs to be specified

in the configuration. For example,

SphFile : sphere_655362.txt

The file sphere_655362.txt contains the positon of a set of points uniformly sampled on the unit sphere

used for distortion calculation.

The file latweights.txt contains the lookup table of weights for different latitudes. Parameter file

sphere_655362.txt is based on [8] and provided in the 360Lib package under “./cfg/360Lib/”.

PSNR and WS-SPSNR calculation do not need additional parameter files.

For example, to evaluate the quality impact due to projection format conversion, the user can convert

projection A to projection B and then convert from projection B back to projection A using 360Lib. The

user can then measure the distortion using any of these metrics between the original picture in projection A

and the back-converted picture in projection A. Or, to evaluate the quality impact due to compression, the

user can measure the distortion using any of these metrics between the picture in a given projection before

and after compression. The user can also evaluate the quality impact due to the combination of projection

format conversion and compression. The “ReferenceFaceWidth” and “ReferenceFaceHeight” need to be

set when those spherical metrics needs to be calculated using 360Lib standalone conversion application.

The 360Lib software integrated with HM/JEM encoder supports ten quality metrics listed in Table 6.

Table 5. Quality metrics supported

Metric name Characteristics

PSNR Calculate PSNR based on all samples with

equal weight.

WS-PSNR Calculate PSNR based on all samples; the

distortion is weighted by sample area on

corresponding spherical surface.

Spherical PSNR

without

interpolation

(S-PSNR-NN)

Calculate PSNR based on a point set evenly

sampled on the unit sphere; the projected

position is rounded to nearest neighbor

integer position.

 Page: 18 Date Saved: 2017-04-21

Spherical PSNR

with interpolation

(S-PSNR-I)

Calculate PSNR based on a point set evenly

sampled on the unit sphere; the sample value

at the projected position is interpolated with

neighboring samples at integer positions.

CPP-PSNR Calculate PSNR in Crasters Parabolic

Projection format.

Table 6. Quality metrics supported in 360 video encoder

Metric name Characteristics

End to end S-

PSNR-NN

Calculate S-PSNR-NN between the original

video and reconstructed video in the same

projection format and resolution as original

video.

End to end S-

PSNR-I

Calculate S-PSNR-I between the original

video and reconstructed video in the same

projection format and resolution as original

video.

End to end CPP-

PSNR

Calculate CPP-PSNR between the original

video and reconstructed video in CPP

domain with the same resolution as original

video.

End to end WS-

PSNR

Calculate WS-PSNR between the original

video and reconstructed video in the same

projection format and resolution as original

video.

Dynamic viewport

PSNR

Calculate WS-PSNR between the original

viewport generated from original video and

the reconstructed viewport generated from

encoder reconstructed video.

Cross-format S-

PSNR-NN

Calculate S-PSNR-NN between the original

video and the reconstructed video from

encoder.

Cross-format S-

PSNR-I

Calculate S-PSNR-I between the original

video and the reconstructed video from

encoder.

Cross-format CPP-

PSNR
Calculate CPP-PSNR between the original

video and the reconstructed video from

encoder; the resolution is the same as the

reconstructed video from encoder.

WS-PSNR Calculate WS-PSNR between the converted

video from original video in the coding

projection format and resolution and the

reconstructed video from encoder;

PSNR Calculate PSNR between the converted

video from original video in the coding

 Page: 19 Date Saved: 2017-04-21

projection format and resolution and the

reconstructed video from encoder;

2.11 Interpolation filters

Choice of interpolation filter can be specified with the parameter “InterpolationMethod”. Table 7 lists five

interpolation methods supported by 360Lib and their respective indices in the configuration file.

Further, the interpolation method for luma and chroma components can be specified separately. Parameter

“InterpolationMethodY” is used to specify the interpolation method for the luma component, and parameter

“InterpolationMethodC” is used to specify the interpolation method for the chroma components.

Table 7. Interpolation methods supported

Index Interpolation method Notes

0 Reserved

1 Nearest neighbor

2 Bilinear

3 Bicubic

4 Lanczos2 Default setting

for the chroma

components

5 Lanczos3 Default setting

for the luma

component

2.12 Outputting sphere coordinates of the output projection format

To facilitate further analysis for those who are interested in doing so, the 360Lib tool supports writing out

the sphere coordinates associated with the output projection format. Specifically, user can choose to write

out to a file the latitude and longitude values of each point on the sphere corresponding to each sample

position in the destination projection format. For example, if the output projection format is cubemap, then

the corresponding latitude and longitude values on the sphere of each point in the frame-packed cubemap

image can be written out to a txt file, whose file name is specified by the configuration parameter

“SpherePointsFile”. For example,

SpherePointsFile : CMP_SpherePoints.txt

The latitude value is in the range of [-90, 90], and the longitude value is in the range of [-180, 180).

2.13 Sphere Rotation

The 360Lib tool supports to rotate the sphere during the projection format conversion. For example, the

center in original ERP format is the center front view. When converting to another format, the user may

want to put the center to another position in the sphere. The software defines 3D rotation along X, Y, Z.

SVideoRotation : yaw pitch roll

yaw: counterclockwise rotation in degree along Y axis;

pitch: counterclockwise rotation in degree along (-Z) axis;

 Page: 20 Date Saved: 2017-04-21

roll: counterclockwise rotation in degree along X axis;

Those input angles can be in floating point, and they are represented in fixed point internally. The precision

of fixed point is 1/100 degree.

3 360Lib software package

3.1 Projection conversion software

The 360Lib software package includes many example configuration files that can be used to perform

projection conversion between any two projection formats, as listed in Table 8. These example

configuration files are stored in the directory “./cfg/360Lib/”. Table 8 shows an additional value of

CodingGeometryType (CodingGeometryType = 4). This additional value will be explained next in section

3.2. For convenience, the input video property related settings for all 360 test sequences can be found in

the directory “./cfg/per-sequence/360/”. A complete list of parameters supported by 360Lib can be obtained

with following command:

 TApp360Convert –help

For example, to convert one ERP test sequence (e.g. skateboarding_vr) to cubemap 4x3 for one frame, the

following command can be used:

 TApp360Convert –c ../cfg/360Lib/360convert_ERP_Cubemap4x3.cfg –c ../cfg/per-

sequence/360/360test_skateboarding_vr.cfg –o cubemap4x3_fromERP.yuv –f 1

Note that the output picture resolution, sample bit-depth, and chroma format will be automatically appended

to the output file name specified by the user (cubemap4x3_fromERP).

Table 8. Example configuration files for different conversions

InputGeometryType

0

(ERP)

CodingGeometryType Example configuration file

0 360convert_ERP_ERP.cfg

1(3x2) 360convert_ERP_Cubemap3x2.cfg

2 360convert_ERP_EAP.cfg

3(compact) 360convert_ERP_COHP.cfg

4 360convert_ERP_RVP.cfg

5(compact) 360convert_ERP_CISP.cfg

7 360convert_ERP_TSP.cfg

8 360convert_ERP_SSP.cfg

9 360convert_ERP_ACP.cfg

10 360convert_ERP_RSP.cfg

1

(Cubemap 3x2)

0 360convert_Cubemap4x3_ERP.cfg

1(3x2) 360convert_Cubemap3x2_Cubemap3x2.cfg

2 360convert_Cubemap3x2_EAP.cfg

3(compact) 360convert_Cubemap3x2_COHP.cfg

4 360convert_Cubemap3x2_RVP.cfg

5(compact) 360convert_Cubemap3x2_CISP.cfg

 Page: 21 Date Saved: 2017-04-21

2

(Equal-area)

0 360convert_EAP_ERP.cfg

1(3x2) 360convert_EAP_Cubemap3x2.cfg

2 360convert_EAP_EAP.cfg

3(compact) 360convert_EAP_COHP.cfg

4 360convert_EAP_RVP.cfg

5(compact) 360convert_EAP_CISP.cfg

3

(Compact octahedron)

0 360convert_COHP_ERP.cfg

1(3x2) 360convert_COHP_Cubemap3x2.cfg

2 360convert_COHP_EAP.cfg

3(compact) 360convert_COHP_COHP.cfg

4 360convert_COHP_RVP.cfg

5(compact) 360convert_COHP_CISP.cfg

5

(Compact

icosahedron)

0 360convert_CISP_ERP.cfg

1(3x2) 360convert_CISP_Cubemap3x2.cfg

2 360convert_CISP_EAP.cfg

3(compact) 360convert_CISP_COHP.cfg

4 360convert_CISP_RVP.cfg

5(compact) 360convert_CISP_CISP.cfg

7 (TSP) 0 360convert_TSP_ERP.cfg

8 (SSP) 0 360convert_SSP_ERP.cfg

1(3x2) 360convert_SSP_Cubemap3x2.cfg

2 360convert_SSP_EAP.cfg

3(compact) 360convert_SSP_COHP.cfg

4 360convert_SSP_RVP.cfg

5(compact) 360_convert_SSP_CISP.cfg

7 360_convert_SSP_TSP.cfg

9 (ACP) 0 360convert_ACP_ERP.cfg

4 360convert_ACP_RVP.cfg

10 (RSP) 0 360convert_RSP_ERP.cfg

4 360convert_RSP_RVP.cfg

3.2 Viewport generation

360-degree video is unique in that, unlike conventional 2D planar video, only a portion (i.e., the viewport)

of the entire spherical video will be rendered and presented to the viewer. To correspond to this unique

behavior, 360Lib provides the functionality to render images within a given viewport using rectilinear

projection [7]. Once rendered, the 2D rectilinear viewport pictures can be viewed on conventional displays

 Page: 22 Date Saved: 2017-04-21

(TV, monitors) directly. To use this functionality, the user should set CodingGeometryType to 4 in the

configuration file. 360Lib supports viewport generation from any of the seven projection formats:

equirectangular, equal-area, cubemap, octahedron, icosahedron, truncated-square-projection, segmented

sphere projection.

Three modes of viewport generation are supported:

 Fixed viewport mode: this mode generates a fixed viewport for the entire video sequence. The

configuration file parameter “ViewPortSettings” is used to specify the viewport, for example, as

follows:

ViewPortSettings : 75.0 75.0 270.0 0.0

In this example, the horizontal and vertical field of view (FOV) are both set to be 75.0 degrees, the

center of the viewport is set at 270.0 degrees in longitude and 0.0 degree in altitude.

 Dynamic viewport mode: this modes allows the user to specify the viewport on a frame-by-frame

basis. To use this mode, an external viewport setting file needs to be provided via the configuration

parameter “ViewPortFile”. For example, “ViewPortFile” is set as follows:

ViewPortFile : viewport.txt

In viewport.txt (or any other filename), the frame-by-frame viewport setting should be arranged as

follows:

0 75 75 15 5

4 75 75 45 5

8 75 75 60 5

…

Where each line specifies a frame number followed by the viewport setting for each video segment.

The first line specifies “75 75 15 5” viewport setting for the frame period from POC 0 to POC 3,

inclusive. The second line specifies “75 75 45 5” viewport setting for the second video segment from

POC 4 to POC 7, inclusive. The last line specifies “75 75 60 5” viewport setting for the last video

segment, from POC 8 to the end of the sequence. This dynamic viewport mode allows the user to render

and write out a video sequence with dynamically changing viewport, thus simulating the viewing

behavior of 360 video when the user changes the viewing angle by moving his/her head around wearing

a HMD.

 Dynamic viewport with transition mode: this modes allows the user to specify the viewports at the

beginning and the end of the video. The conversion software will automatically calculate the

viewport position with linear interpolation for each frame. To use this mode, an external viewport

setting file needs to be provided via the configuration parameter “DynamicViewPortFile”. For

example, “DynamicViewPortFile” is set as follows:

DynamicViewPortFile : dynamic_viewport.txt

In dynamic_viewport.txt (or any other filename), the parameter should be arranged as follows:

75.0 75.0 0 -45 -15 299 45 15

The first two parameters specify the horizontal and vertical FOV size. The third parameter is the POC

of the picture at the beginning, and the following two parameters are yaw and pitch for the center of

the viewport for that picture. The sixth parameter is the POC of the picture at the end, and the following

two parameters are yaw and pitch for the center of the viewport for the picture.

The width and height of viewport are specified by parameter “CodingFaceWidth” and

“CodingFaceHeight”, respectively.

 Page: 23 Date Saved: 2017-04-21

3.3 Encoding with 360Lib

The 360Lib can be integrated with the HM (HM-16.14) or JEM (JEM-4.1) encoder. The readme file is

provided as “./360Lib_README.txt”. Example configuration files listed in Table 9 that can be used to

perform encoding together with projection conversion are available in the directory “./cfg” if the source

video is in ERP format. The common test condition is provided in [13].

Table 9. Example configuration files for encoding with different projection formats given ERP

source video

Coding projection format Configuration file

ERP encoder_360_ERP.cfg

CMP (3x2 frame packing) encoder_360_CMP.cfg

EAP encoder_360_EAP.cfg

OHP (frame packing option 1) encoder_360_COHP1.cfg

ISP encoder_360_CISP1.cfg

TSP encoder_360_TSP.cfg

SSP vertical frame packing encoder_360_SSP_vert.cfg

ACP encoder_360_ACP.cfg

RSP encoder_360_RSP.cfg

OHP (frame packing option 2) encoder_360_COHP2.cfg

The configuration file parameter “SphereVideo” is used to indicate if the video needs projection conversion

before encoding or not. If SphereVideo is equal to 1, then all projection conversion related parameters will

be applied to calculate the projection format conversion output. Then, the converted frames are sent directly

to HM encoder. If SphereVideo is 0, then the input video is encoded without any projection conversion.

SphereVideo : 1

4 References
[1] Y. He, B. Vishwanath, X. Xiu, Y. Ye, “AHG8: InterDigital’s projection format conversion tool,” Joint

Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JVET-D0021, Oct.

2016, Chengdu, China.

[2] Equirectangular projection, https://en.wikipedia.org/wiki/Equirectangular_projection

[3] Cubemap, https://en.wikipedia.org/wiki/Cube_mapping

[4] Lambert cylindrical equal-area projection, https://en.wikipedia.org/wiki/Lambert_cylindrical_equal-

area_projection

[5] Octahedron, https://en.wikipedia.org/wiki/Octahedron

[6] V. Zakharchenko, E. Alshina, K. P. Choi, A. Singh, A. Dsouza, AhG8: Icosahedral projection for 360-

degree video content, Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC

JTC1/SC29/WG11, JVET-D0028, Oct. 2016, Chengdu, China.

[7] Rectilinear projection, http://wiki.panotools.org/Rectilinear_Projection

[8] M. Yu, H. Lakshman, B. Girod, “A Framework to Evaluate Omnidirectional Video Coding Schemes”,

IEEE International Symposium on Mixed and Augmented Reality, 2015.

[9] Y. Sun, A. Lu, L. Yu, “AHG8: WS-PSNR for 360 video objective quality evaluation,” Joint Video

Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JVET-D0040, Oct. 2016,

Chengdu, China.

 Page: 24 Date Saved: 2017-04-21

[10] Y.-H. Lee, H.-C. Lin, J.-L. Lin, S.-K. Chang, C.-C. Ju, “AHG8: An improvement on compact

octahedron projection with padding,” Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC

JTC1/SC29/WG11, JVET-F0053, Mar. 2017, Hobart, AU.

[11] G. Van der Auwera, M. Coban, H. Fnu, M. Karczewicz, “AHG8: Truncated Square Pyramid

Projection (TSP) For 360 Video,” Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC

JTC1/SC29/WG11, JVET-D0071, Oct. 2016.

[12] C. Zhang, Y. Lu, J. Li, Z. Wen, “AhG8: segmented sphere projection for 360-degree video,” Joint

Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JVET-E0025, Jan.

2017.

[13] J. Boyce, E. Alshina, A. Abbas, Y. Ye, “JVET common test conditions and evaluation procedures

for 360° video,” Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11,

JVET-E1030, Jan. 2017.

[14] M. Coban, G. Van der Auwera, M. Karczewicz, “AHG8: Adjusted cubemap projection for 360-

degree video,” JVET-F0025, Mar. 2017, Hobart, AU.

[15] A. Abbas, D. Newman, “AHG8: Rotated Sphere Projection for 360 Video,” JVET-F0036, Mar.

2017, Hobart, AU.

mailto:louise.lee@mediatek.com
mailto:hungchih.lin@mediatek.com
mailto:jl.lin@mediatek.com
mailto:shenkai.chang@mediatek.com
http://phenix.int-evry.fr/jvet/doc_end_user/current_document.php?id=2723
mailto:chuanyi.zhang@owlreality.com
mailto:yao.lu@owlreality.com
mailto:jisheng.li@owlreality.com

