
© Fraunhofer HHI | 1

NEXT SOFTWARE – DATA STRUCTURES

© Fraunhofer HHI | 2

Motivation
HM Shortcomings

 Complicated data structures

 Z-index

 Ambiguous data model (TComDataCU)

 Bad code readability

 Complicated memory operations are intermixed with general data flow

 Lack of data and logic encapsulation

 Complicated extensibility

 Data structures were designed with strict assumptions (e.g. square blocks)

 How many ideas were discarded because of erroneous implementation?

© Fraunhofer HHI | 3

Goals
NextSoftware design principles

 Simple unambiguous data model

 Modern OO-design, yet fast and sleek

 Global pixel addressing

 Elimination of Z-index usage

 Elimination of 2-level (CTU→Z-Index) signal addressing

 Encapsulation of trivial operations (e.g. memory operations)

 Allows for better readability of general flow

 Better code readability

 Allowing for easier extensibility

© Fraunhofer HHI | 4

HM – Model

 TComDataCU

 Stores coding information

 Might represent a CU or CTU (containing multiple CU’s)

 Basically a map of image position to coding information

 TComTU

 An object allowing for easier TU structure navigation

 Contains no actual data, but rather wraps around TComDataCU

 TComPicYuv

 Stores the video signals

© Fraunhofer HHI | 5

NextSoftware – Model
Navigation

 Size, Position, Area (Position + Size)

 Represent basic 2D navigation information

 CompArea

 Area in a given component (block)

 UnitArea

 Represents an area in a multi-channel signal

 A set of blocks describing a composition of co-located components

© Fraunhofer HHI | 6

NextSoftware – Model
Signal Storage

 AreaBuf

 Describes the memory layout of a 2D signal in linear memory

 Contains simple operations (copy, fill etc.)

 UnitAreaBuf

 Describes the memory layout a multi-component 2D signal in linear memory

 Contains simple operations (copy, fill etc.)

 PelStorage

 A UnitAreaBuf which also allocates its own memory

© Fraunhofer HHI | 7

NextSoftware – Model
Coding Information

 Picture

 Contains input and output signals as well as metadata (slice info etc.)

 CodingUnit, PredictionUnit, TransformUnit

 Single object for a single unit

 Contain the corresponding information

 Include the location information (derived from UnitArea)

 CodingStructure

 Manages the CodingUnit and co., links them with the picture

 Contains additional functionalities for top-down RD-search

© Fraunhofer HHI | 8

NextSoftware – Model
UML-Diagram of the Basic Model

+width

+height

Size

+x

+y

Position

+topLeft()

+topRight()

+bottomLeft()

+bottomRight()

+center()

Area

+compID

CompArea

+chromaFormat

+blocks : CompArea

UnitArea1

*

+depth

+predMode

+...

CodingUnit

+intraDir

+interDir

+...

PredictionUnit

+depth

+cbf

+...

TransformUnit

+getCU() : CodingUnit

+getPU() : PredictionUnit

+getTU() : TransformUnit

+addCU() : CodingUnit

+addPU() : PredictionUnit

+addTU() : TransformUnit

+cus

+pus

+tus

+parent

+...

CodingStructure

1

*
1
*

1

*

1 1

+fill()

+copyFrom()

+addAvg()

+substract()

+reconstruct()

-stride

-buf

AreaBuf

+fill()

+copyFrom()

+addAvg()

+substract()

+reconstruct()

+chromaFormat

+bufs : AreaBuf

UnitBuf

1

*

1

1

Picture

1

1

1

*

© Fraunhofer HHI | 9

HM – NextSoftware Model Equivalencies

HM NextSoftware

Z-index, (CTU)-RS-address, Depth Position, Size, (Comp)Area, UnitArea

TComDataCU CodingUnit, PredictionUnit, TransformUnit
Operations in CU, PU, TU namespaces
CodingStructure

TComTU Partitioning is governed by Partitioner

TComPicYuv Picture

TComPic Picture

TComYuv UnitAreaBuf

© Fraunhofer HHI | 10

NextSoftware – Detailed Description
CodingStructure Basics

 Contains CodingUnit etc. objects and maps them to the picture

 A TComDataCU replacement, but globally allocated

 Top-level CodingStructure contains all CU’s, PU’s and TU’s in the frame

 Sub-level CodingStructure contains a representation of a specific UnitArea

 After creation it’s empty and needs to be filled

 addCU/PU/TU methods create and map the specific object

 getCU/PU/TU fetches the specific objects addressed using global Position

 Dynamically allocates the required resources

 Uses dynamic_cache for increased performance

© Fraunhofer HHI | 11

NextSoftware – Detailed Description
RD-Search with CodingStructure

 Designed for Top-Down approach

 Allows for local test encoding with “transparent” global context

 Follows the well known best-temp scheme with up-propagation

 Hierarchically cascaded

 A CodingStructure is set up to represent a local UnitArea

 Calls outside of this UnitArea are forwarded to the parent CodingStructure

 Parent nodes are not aware of the children nodes

 Best candidates need to be propagated to the parents

© Fraunhofer HHI | 12

NextSoftware – Detailed Description
Hierarchical Cascading with CodingStructure

cs1: CodingStructure at (0, 0)

cu2: CodingUnit at (32, 32)

cu1: CodingUnit at (16, 32)

cs2: CodingStructure at (32, 32)

 cs2.getCU({32, 32})

 returns cu2

 cs2.getCU({16, 32})

 returns cu1

 cs1.getCU({32, 32})

 returns nullptr

© Fraunhofer HHI | 13

NextSoftware – Detailed Description
Hierarchical Cascading with CodingStructure

cs1: CodingStructure at (0, 0)

cu2: CodingUnit at (32, 32)

cu1: CodingUnit at (16, 32)

cs2: CodingStructure at (32, 32)

 cs2.getCU({32, 32})

 returns cu2

 cs2.getCU({16, 32})

 returns cu1

 cs1.getCU({32, 32})

 returns nullptr

© Fraunhofer HHI | 14

NextSoftware – Detailed Description
Hierarchical Cascading with CodingStructure

cs1: CodingStructure at (0, 0)

cu2: CodingUnit at (32, 32)

cu1: CodingUnit at (16, 32)

cs2: CodingStructure at (32, 32)

 cs2.getCU({32, 32})

 returns cu2

 cs2.getCU({16, 32})

 returns cu1

 cs1.getCU({32, 32})

 returns nullptr??

© Fraunhofer HHI | 15

NextSoftware – Detailed Description
Partitioner

 A simple class governing splitting (CU and TU, quad-tree and possibly others)

 Modelled as a stack – new splits are created as levels on the currently processed area

 For HEVC

 Contains accessors for current split info (partitioner.curr*)

 Depth (CU, TU) as well as the actual current UnitArea

 For QTBT and further (additionally to HEVC-features)

 Allows to set split restrictions (e.g. constraint splits at a certain level)

 Allows to perform split plausibility checks (canSplit)

© Fraunhofer HHI | 16

NextSoftware – Detailed Description
Data Ownership

 Each piece of data is owned by some object, which needs to allocate and release it

 Picture

 Owned by EncLib or DecLib

 Owns signal buffers, Slice objects, SEI messages and TileMap

 AreaBuf, UnitBuf

 Do not own any data

 PelStorage

 Might own the buffers (depends if create or createFromBuf used for creation)

 Owned data is stored in m_origin member

© Fraunhofer HHI | 17

NextSoftware – Detailed Description
Data Ownership

 CodingStructure

 Top-Layer: owned by Picture

 Links to signal buffers of Picture, does not own them

 Other (temporary in RD-Search): owned by EncCu or IntraSearch

 Contains own signal buffers, owns them

 Always owns buffers describing the structure and layout (not signal)

 Owns transformation coefficient buffers

 Does not own CodingUnit etc., only links to them through dynamic_cache

© Fraunhofer HHI | 18

NextSoftware – Detailed Description
Data Ownership

 CodingUnit, PredictionUnit, TransformUnit

 Owned by dynamic_cache – objects need to be acquired by get and freed by cache

 TransformUnit

 Does not own transformation coefficient buffers

 Links to buffers from CodingStructure

 dynamic_cache

 Top-Level cache is global (dynamically allocated on runtime and freed on exit)

 RD-search cache is owned by EncCu and IntraSearch

© Fraunhofer HHI | 19

NextSoftware – Code Snippets
Iterate over all TUs in a CU (inter decompression example)

// call xDecodeInterTU for all TUs in the CU described by cu

for(auto& currTU : CU::traverseTUs(cu))

{

xDecodeInterTU(currTU, compID);

}

 Iterating over PUs works similar with traversePUs(…) call

 firstTU and firstPU can be used as fast accessors if the CU only has one TU/PU

© Fraunhofer HHI | 20

NextSoftware – Code Snippets
Iterate over all CUs in a specific area (CTU decompression example)

// iterate over all CUs which are contained in the area described by ctuArea

for(auto &currCU : cs.traverseCUs(ctuArea))

{

// decompress CU

xDecompress(currCU);

}

© Fraunhofer HHI | 21

NextSoftare – Common Problems
Where is the motion information stored?

 Initially with HEVC, minimal resolution for Motion Vector storing was the PU

 New prosed tools for h.266 standard break this convention (e.g. VCEG-AZ10)

 Sub-PU resolution for motion vector information is needed

 Storing sub-PUs as PUs would break the logical purpose of a PU

 Solution: additional buffer for sub-PU resolved motion information

 Example:

Mv mvL0 = cs.getPU(pos)->mv[0]; // obsolete low-res call
Mv mvL0 = cs.getMotionInfo(pos).mv[0]; // new next-style high-res call

 Old call still allowed, might provide sub-resolution results

 PU::spanMotionInfo sets up the buffer

© Fraunhofer HHI | 22

Contact:

Adam Wieckowski
adam.wieckowski@hhi.fraunhofer.de
-833

Einsteinufer 37
10587 Berlin

Fraunhofer Institute for Telecommunications,
Heinrich Hertz Institute, HHI

WE PUT SCIENCE
INTO ACTION.

© Fraunhofer HHI | 23

NextSoftware – Reference
Size, Position, Area

 Size

 width, height : UInt – describe the size of a rectangle

 Position

 x, y: Int – describe the 2D position of a point

 Area : Size, Position

 a rectangle of a specific Size located at a specific Position

 CompArea : Area

 an Area within a specific component (compID) of a multi-component signal

© Fraunhofer HHI | 24

NextSoftware – Reference
UnitArea, CodingUnit, PredictionUnit, TransformUnit

 UnitArea

 blocks [0..N-1]: CompArea

 a multi-component compound consisting of N blocks

 CodingUnit : UnitArea

 Describes how the area described by this UnitArea is coded

 PredictionUnit : UnitArea

 Describes how the prediction signal for this UnitArea is to be generated

 TransformUnit : UnitArea

 Describes how the transformation coding for this UnitArea is to be applied

© Fraunhofer HHI | 25

NextSoftware – Reference
AreaBuf

 AreaBuf<T> (defined for Pel and TCoeff as PelAreaBuf and CoeffAreaBuf)

 at(x, y) – returns the value of the signal at position (x,y)

 bufAt(x, y) – returns the raw pointer to the buffer at position (x,y)

 subBuf(x, y, w, h) – returns a AreaBuf describing an area offset by (x,y) of size (w,h)

 fill(val) – fills the specified area with the defined value

 copyFrom(other) – copies the contents from the other area

 substract, addAvg, reconstruct, removeHighFreq – methods replacing the
functionalities of TComYuv

 UnitBuf<T> (similar interface to AreaBuf)

 bufs [0..N-1]: AreaBuf – contains the signal descriptions for different components

© Fraunhofer HHI | 26

NextSoftware – Reference
CodingStructure Basics

 CodingStructure

 area: UnitArea – describes which area in the picture the CodingStructure spans

 addCU(UnitArea) – creates and locates a CodingUnit spanning the UnitArea

 getCU(Position) – returns the CodingUnit located at the specified Position

(analogue interfaces exist for TransformUnit and PredictionUnit)

 setDecomp(CompArea) – sets the specified CompArea as reconstructed

 setDecomp(UnitArea) – analogue multi-channel operation

 isDecomp(Position) – tells if the reco. signal for the Position has been generated

© Fraunhofer HHI | 27

NextSoftware – Reference
RD-Search with CodingStructure

 CodingStructure

 initStructData(…) – clears all currently contained data (signals and coding info)

 initSubStructure(…) – links a new CodingStructure at the bottom of the hierarchy

 useSubStructure(…) – copies the coding data from a sub-structure

 copyStructure(…) – copies to coding data from another structure, does not rely on
a parent-child binding

